Subalgebra 2A11E16
21 out of 119
Computations done by the calculator project.

Subalgebra type: 2A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A11 .
Centralizer: A13 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: 2A11
Basis of Cartan of centralizer: 4 vectors: (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: 3A11 , A21+2A11 , A41+2A11 , A101+2A11 , 4A11 , 2A21+2A11 , A12+2A11 , B12+2A11 , A13+2A11 .

Elements Cartan subalgebra scaled to act by two by components: A11: (1, 2, 2, 3, 2, 1): 2, A11: (1, 0, 1, 1, 1, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g36, g24
Positive simple generators: g36, g24
Cartan symmetric matrix: (2002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2002)
Decomposition of ambient Lie algebra: V2ω26Vω1+ω2V2ω18Vω28Vω116V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω2+2ψ3+4ψ4Vω12ψ2+2ψ3+4ψ4Vω12ψ1+2ψ2+4ψ4Vω1+2ψ1+2ψ4V2ψ2+4ψ3+2ψ4V2ψ1+2ψ2+2ψ3+2ψ4Vω1+ω22ψ1+2ψ3+2ψ4V2ψ1+2ψ3Vω1+ω2+2ψ12ψ2+2ψ3Vω1+ω2+2ψ2Vω22ψ1+4ψ4Vω2+2ψ12ψ2+2ψ4Vω2+2ψ22ψ3+2ψ4V2ω2V2ω1Vω12ψ3+2ψ4Vω1+2ψ32ψ4V2ψ12ψ2+2ψ3+2ψ4V4ψ1+2ψ2+2ψ4V2ψ14ψ2+2ψ34V0Vω1+ω22ψ2V2ψ1+4ψ22ψ3Vω1+ω22ψ1+2ψ22ψ3V4ψ12ψ22ψ4V2ψ1+2ψ22ψ32ψ4Vω1+ω2+2ψ12ψ32ψ4Vω22ψ2+2ψ32ψ4Vω22ψ1+2ψ22ψ4Vω2+2ψ14ψ4Vω12ψ12ψ4Vω1+2ψ12ψ24ψ4Vω1+2ψ22ψ34ψ4V2ψ12ψ3V2ψ12ψ22ψ32ψ4V2ψ24ψ32ψ4Vω22ψ34ψ4
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 40) ; the vectors are over the primal subalgebra.g5g10g15g9g3g4h4h6+h1h3h5g4g3g9g15g10g5g28g25g20g31g17g29g26g22g6g21g16g11g12g7g1g18g36g32g30g27g35g34g33g24
weight0000000000000000ω1ω1ω1ω1ω1ω1ω1ω1ω2ω2ω2ω2ω2ω2ω2ω22ω1ω1+ω2ω1+ω2ω1+ω2ω1+ω2ω1+ω2ω1+ω22ω2
weights rel. to Cartan of (centralizer+semisimple s.a.). 2ψ24ψ32ψ42ψ12ψ22ψ32ψ42ψ12ψ32ψ1+2ψ22ψ32ψ44ψ12ψ22ψ42ψ1+4ψ22ψ300002ψ14ψ2+2ψ34ψ1+2ψ2+2ψ42ψ12ψ2+2ψ3+2ψ42ψ1+2ψ32ψ1+2ψ2+2ψ3+2ψ42ψ2+4ψ3+2ψ4ω1+2ψ22ψ34ψ4ω1+2ψ12ψ24ψ4ω12ψ12ψ4ω1+2ψ32ψ4ω12ψ3+2ψ4ω1+2ψ1+2ψ4ω12ψ1+2ψ2+4ψ4ω12ψ2+2ψ3+4ψ4ω22ψ34ψ4ω2+2ψ14ψ4ω22ψ1+2ψ22ψ4ω22ψ2+2ψ32ψ4ω2+2ψ22ψ3+2ψ4ω2+2ψ12ψ2+2ψ4ω22ψ1+4ψ4ω2+2ψ3+4ψ42ω1ω1+ω2+2ψ12ψ32ψ4ω1+ω22ψ1+2ψ22ψ3ω1+ω22ψ2ω1+ω2+2ψ2ω1+ω2+2ψ12ψ2+2ψ3ω1+ω22ψ1+2ψ3+2ψ42ω2
Isotypic module decomposition over primal subalgebra (total 37 isotypic components).
Isotypical components + highest weightV2ψ24ψ32ψ4 → (0, 0, 0, 2, -4, -2)V2ψ12ψ22ψ32ψ4 → (0, 0, 2, -2, -2, -2)V2ψ12ψ3 → (0, 0, -2, 0, -2, 0)V2ψ1+2ψ22ψ32ψ4 → (0, 0, 2, 2, -2, -2)V4ψ12ψ22ψ4 → (0, 0, 4, -2, 0, -2)V2ψ1+4ψ22ψ3 → (0, 0, -2, 4, -2, 0)V0 → (0, 0, 0, 0, 0, 0)V2ψ14ψ2+2ψ3 → (0, 0, 2, -4, 2, 0)V4ψ1+2ψ2+2ψ4 → (0, 0, -4, 2, 0, 2)V2ψ12ψ2+2ψ3+2ψ4 → (0, 0, -2, -2, 2, 2)V2ψ1+2ψ3 → (0, 0, 2, 0, 2, 0)V2ψ1+2ψ2+2ψ3+2ψ4 → (0, 0, -2, 2, 2, 2)V2ψ2+4ψ3+2ψ4 → (0, 0, 0, -2, 4, 2)Vω1+2ψ22ψ34ψ4 → (1, 0, 0, 2, -2, -4)Vω1+2ψ12ψ24ψ4 → (1, 0, 2, -2, 0, -4)Vω12ψ12ψ4 → (1, 0, -2, 0, 0, -2)Vω1+2ψ32ψ4 → (1, 0, 0, 0, 2, -2)Vω12ψ3+2ψ4 → (1, 0, 0, 0, -2, 2)Vω1+2ψ1+2ψ4 → (1, 0, 2, 0, 0, 2)Vω12ψ1+2ψ2+4ψ4 → (1, 0, -2, 2, 0, 4)Vω12ψ2+2ψ3+4ψ4 → (1, 0, 0, -2, 2, 4)Vω22ψ34ψ4 → (0, 1, 0, 0, -2, -4)Vω2+2ψ14ψ4 → (0, 1, 2, 0, 0, -4)Vω22ψ1+2ψ22ψ4 → (0, 1, -2, 2, 0, -2)Vω22ψ2+2ψ32ψ4 → (0, 1, 0, -2, 2, -2)Vω2+2ψ22ψ3+2ψ4 → (0, 1, 0, 2, -2, 2)Vω2+2ψ12ψ2+2ψ4 → (0, 1, 2, -2, 0, 2)Vω22ψ1+4ψ4 → (0, 1, -2, 0, 0, 4)Vω2+2ψ3+4ψ4 → (0, 1, 0, 0, 2, 4)V2ω1 → (2, 0, 0, 0, 0, 0)Vω1+ω2+2ψ12ψ32ψ4 → (1, 1, 2, 0, -2, -2)Vω1+ω22ψ1+2ψ22ψ3 → (1, 1, -2, 2, -2, 0)Vω1+ω22ψ2 → (1, 1, 0, -2, 0, 0)Vω1+ω2+2ψ2 → (1, 1, 0, 2, 0, 0)Vω1+ω2+2ψ12ψ2+2ψ3 → (1, 1, 2, -2, 2, 0)Vω1+ω22ψ1+2ψ3+2ψ4 → (1, 1, -2, 0, 2, 2)V2ω2 → (0, 2, 0, 0, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18W19W20W21W22W23W24W25W26W27W28W29W30W31W32W33W34W35W36W37
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g5
g10
g15
g9
g3
g4
Cartan of centralizer component.
h4
h6+h1
h3
h5
g4
g3
g9
g15
g10
g5
g28
g22
g25
g26
g20
g29
g31
g17
g17
g31
g29
g20
g26
g25
g22
g28
g6
g18
g21
g1
g16
g7
g11
g12
g12
g11
g7
g16
g1
g21
g18
g6
Semisimple subalgebra component.
g36
h6+2h5+3h4+2h3+2h2+h1
2g36
g32
g14
g13
g33
g30
g19
g8
g34
g27
g23
g2
g35
g35
g2
g23
g27
g34
g8
g19
g30
g33
g13
g14
g32
Semisimple subalgebra component.
g24
h6+h5+h4+h3+h1
2g24
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0000000000000ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ψ24ψ32ψ42ψ12ψ22ψ32ψ42ψ12ψ32ψ1+2ψ22ψ32ψ44ψ12ψ22ψ42ψ1+4ψ22ψ302ψ14ψ2+2ψ34ψ1+2ψ2+2ψ42ψ12ψ2+2ψ3+2ψ42ψ1+2ψ32ψ1+2ψ2+2ψ3+2ψ42ψ2+4ψ3+2ψ4ω1+2ψ22ψ34ψ4
ω1+2ψ22ψ34ψ4
ω1+2ψ12ψ24ψ4
ω1+2ψ12ψ24ψ4
ω12ψ12ψ4
ω12ψ12ψ4
ω1+2ψ32ψ4
ω1+2ψ32ψ4
ω12ψ3+2ψ4
ω12ψ3+2ψ4
ω1+2ψ1+2ψ4
ω1+2ψ1+2ψ4
ω12ψ1+2ψ2+4ψ4
ω12ψ1+2ψ2+4ψ4
ω12ψ2+2ψ3+4ψ4
ω12ψ2+2ψ3+4ψ4
ω22ψ34ψ4
ω22ψ34ψ4
ω2+2ψ14ψ4
ω2+2ψ14ψ4
ω22ψ1+2ψ22ψ4
ω22ψ1+2ψ22ψ4
ω22ψ2+2ψ32ψ4
ω22ψ2+2ψ32ψ4
ω2+2ψ22ψ3+2ψ4
ω2+2ψ22ψ3+2ψ4
ω2+2ψ12ψ2+2ψ4
ω2+2ψ12ψ2+2ψ4
ω22ψ1+4ψ4
ω22ψ1+4ψ4
ω2+2ψ3+4ψ4
ω2+2ψ3+4ψ4
2ω1
0
2ω1
ω1+ω2+2ψ12ψ32ψ4
ω1+ω2+2ψ12ψ32ψ4
ω1ω2+2ψ12ψ32ψ4
ω1ω2+2ψ12ψ32ψ4
ω1+ω22ψ1+2ψ22ψ3
ω1+ω22ψ1+2ψ22ψ3
ω1ω22ψ1+2ψ22ψ3
ω1ω22ψ1+2ψ22ψ3
ω1+ω22ψ2
ω1+ω22ψ2
ω1ω22ψ2
ω1ω22ψ2
ω1+ω2+2ψ2
ω1+ω2+2ψ2
ω1ω2+2ψ2
ω1ω2+2ψ2
ω1+ω2+2ψ12ψ2+2ψ3
ω1+ω2+2ψ12ψ2+2ψ3
ω1ω2+2ψ12ψ2+2ψ3
ω1ω2+2ψ12ψ2+2ψ3
ω1+ω22ψ1+2ψ3+2ψ4
ω1+ω22ψ1+2ψ3+2ψ4
ω1ω22ψ1+2ψ3+2ψ4
ω1ω22ψ1+2ψ3+2ψ4
2ω2
0
2ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ψ24ψ32ψ4M2ψ12ψ22ψ32ψ4M2ψ12ψ3M2ψ1+2ψ22ψ32ψ4M4ψ12ψ22ψ4M2ψ1+4ψ22ψ3M0M2ψ14ψ2+2ψ3M4ψ1+2ψ2+2ψ4M2ψ12ψ2+2ψ3+2ψ4M2ψ1+2ψ3M2ψ1+2ψ2+2ψ3+2ψ4M2ψ2+4ψ3+2ψ4Mω1+2ψ22ψ34ψ4Mω1+2ψ22ψ34ψ4Mω1+2ψ12ψ24ψ4Mω1+2ψ12ψ24ψ4Mω12ψ12ψ4Mω12ψ12ψ4Mω1+2ψ32ψ4Mω1+2ψ32ψ4Mω12ψ3+2ψ4Mω12ψ3+2ψ4Mω1+2ψ1+2ψ4Mω1+2ψ1+2ψ4Mω12ψ1+2ψ2+4ψ4Mω12ψ1+2ψ2+4ψ4Mω12ψ2+2ψ3+4ψ4Mω12ψ2+2ψ3+4ψ4Mω22ψ34ψ4Mω22ψ34ψ4Mω2+2ψ14ψ4Mω2+2ψ14ψ4Mω22ψ1+2ψ22ψ4Mω22ψ1+2ψ22ψ4Mω22ψ2+2ψ32ψ4Mω22ψ2+2ψ32ψ4Mω2+2ψ22ψ3+2ψ4Mω2+2ψ22ψ3+2ψ4Mω2+2ψ12ψ2+2ψ4Mω2+2ψ12ψ2+2ψ4Mω22ψ1+4ψ4Mω22ψ1+4ψ4Mω2+2ψ3+4ψ4Mω2+2ψ3+4ψ4M2ω1M0M2ω1Mω1+ω2+2ψ12ψ32ψ4Mω1+ω2+2ψ12ψ32ψ4Mω1ω2+2ψ12ψ32ψ4Mω1ω2+2ψ12ψ32ψ4Mω1+ω22ψ1+2ψ22ψ3Mω1+ω22ψ1+2ψ22ψ3Mω1ω22ψ1+2ψ22ψ3Mω1ω22ψ1+2ψ22ψ3Mω1+ω22ψ2Mω1+ω22ψ2Mω1ω22ψ2Mω1ω22ψ2Mω1+ω2+2ψ2Mω1+ω2+2ψ2Mω1ω2+2ψ2Mω1ω2+2ψ2Mω1+ω2+2ψ12ψ2+2ψ3Mω1+ω2+2ψ12ψ2+2ψ3Mω1ω2+2ψ12ψ2+2ψ3Mω1ω2+2ψ12ψ2+2ψ3Mω1+ω22ψ1+2ψ3+2ψ4Mω1+ω22ψ1+2ψ3+2ψ4Mω1ω22ψ1+2ψ3+2ψ4Mω1ω22ψ1+2ψ3+2ψ4M2ω2M0M2ω2
Isotypic characterM2ψ24ψ32ψ4M2ψ12ψ22ψ32ψ4M2ψ12ψ3M2ψ1+2ψ22ψ32ψ4M4ψ12ψ22ψ4M2ψ1+4ψ22ψ34M0M2ψ14ψ2+2ψ3M4ψ1+2ψ2+2ψ4M2ψ12ψ2+2ψ3+2ψ4M2ψ1+2ψ3M2ψ1+2ψ2+2ψ3+2ψ4M2ψ2+4ψ3+2ψ4Mω1+2ψ22ψ34ψ4Mω1+2ψ22ψ34ψ4Mω1+2ψ12ψ24ψ4Mω1+2ψ12ψ24ψ4Mω12ψ12ψ4Mω12ψ12ψ4Mω1+2ψ32ψ4Mω1+2ψ32ψ4Mω12ψ3+2ψ4Mω12ψ3+2ψ4Mω1+2ψ1+2ψ4Mω1+2ψ1+2ψ4Mω12ψ1+2ψ2+4ψ4Mω12ψ1+2ψ2+4ψ4Mω12ψ2+2ψ3+4ψ4Mω12ψ2+2ψ3+4ψ4Mω22ψ34ψ4Mω22ψ34ψ4Mω2+2ψ14ψ4Mω2+2ψ14ψ4Mω22ψ1+2ψ22ψ4Mω22ψ1+2ψ22ψ4Mω22ψ2+2ψ32ψ4Mω22ψ2+2ψ32ψ4Mω2+2ψ22ψ3+2ψ4Mω2+2ψ22ψ3+2ψ4Mω2+2ψ12ψ2+2ψ4Mω2+2ψ12ψ2+2ψ4Mω22ψ1+4ψ4Mω22ψ1+4ψ4Mω2+2ψ3+4ψ4Mω2+2ψ3+4ψ4M2ω1M0M2ω1Mω1+ω2+2ψ12ψ32ψ4Mω1+ω2+2ψ12ψ32ψ4Mω1ω2+2ψ12ψ32ψ4Mω1ω2+2ψ12ψ32ψ4Mω1+ω22ψ1+2ψ22ψ3Mω1+ω22ψ1+2ψ22ψ3Mω1ω22ψ1+2ψ22ψ3Mω1ω22ψ1+2ψ22ψ3Mω1+ω22ψ2Mω1+ω22ψ2Mω1ω22ψ2Mω1ω22ψ2Mω1+ω2+2ψ2Mω1+ω2+2ψ2Mω1ω2+2ψ2Mω1ω2+2ψ2Mω1+ω2+2ψ12ψ2+2ψ3Mω1+ω2+2ψ12ψ2+2ψ3Mω1ω2+2ψ12ψ2+2ψ3Mω1ω2+2ψ12ψ2+2ψ3Mω1+ω22ψ1+2ψ3+2ψ4Mω1+ω22ψ1+2ψ3+2ψ4Mω1ω22ψ1+2ψ3+2ψ4Mω1ω22ψ1+2ψ3+2ψ4M2ω2M0M2ω2

Semisimple subalgebra: W_{30}+W_{37}
Centralizer extension: W_{1}+W_{2}+W_{3}+W_{4}+W_{5}+W_{6}+W_{7}+W_{8}+W_{9}+W_{10}+W_{11}+W_{12}+W_{13}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (250.00, 300.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (200.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 373 arithmetic operations while solving the Serre relations polynomial system.