Highest vectors of representations (total 40) ; the vectors are over the primal subalgebra. | g−5 | g−10 | g−15 | g9 | g3 | g4 | h4 | −h6+h1 | h3 | h5 | g−4 | g−3 | g−9 | g15 | g10 | g5 | g28 | g25 | g20 | g31 | g17 | g29 | g26 | g22 | g6 | g21 | g16 | g11 | g12 | g7 | g1 | g18 | g36 | g32 | g30 | g27 | g35 | g34 | g33 | g24 |
weight | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω2 | ω2 | ω2 | ω2 | ω2 | ω2 | ω2 | ω2 | 2ω1 | ω1+ω2 | ω1+ω2 | ω1+ω2 | ω1+ω2 | ω1+ω2 | ω1+ω2 | 2ω2 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 2ψ2−4ψ3−2ψ4 | 2ψ1−2ψ2−2ψ3−2ψ4 | −2ψ1−2ψ3 | 2ψ1+2ψ2−2ψ3−2ψ4 | 4ψ1−2ψ2−2ψ4 | −2ψ1+4ψ2−2ψ3 | 0 | 0 | 0 | 0 | 2ψ1−4ψ2+2ψ3 | −4ψ1+2ψ2+2ψ4 | −2ψ1−2ψ2+2ψ3+2ψ4 | 2ψ1+2ψ3 | −2ψ1+2ψ2+2ψ3+2ψ4 | −2ψ2+4ψ3+2ψ4 | ω1+2ψ2−2ψ3−4ψ4 | ω1+2ψ1−2ψ2−4ψ4 | ω1−2ψ1−2ψ4 | ω1+2ψ3−2ψ4 | ω1−2ψ3+2ψ4 | ω1+2ψ1+2ψ4 | ω1−2ψ1+2ψ2+4ψ4 | ω1−2ψ2+2ψ3+4ψ4 | ω2−2ψ3−4ψ4 | ω2+2ψ1−4ψ4 | ω2−2ψ1+2ψ2−2ψ4 | ω2−2ψ2+2ψ3−2ψ4 | ω2+2ψ2−2ψ3+2ψ4 | ω2+2ψ1−2ψ2+2ψ4 | ω2−2ψ1+4ψ4 | ω2+2ψ3+4ψ4 | 2ω1 | ω1+ω2+2ψ1−2ψ3−2ψ4 | ω1+ω2−2ψ1+2ψ2−2ψ3 | ω1+ω2−2ψ2 | ω1+ω2+2ψ2 | ω1+ω2+2ψ1−2ψ2+2ψ3 | ω1+ω2−2ψ1+2ψ3+2ψ4 | 2ω2 |
Isotypical components + highest weight | V2ψ2−4ψ3−2ψ4 → (0, 0, 0, 2, -4, -2) | V2ψ1−2ψ2−2ψ3−2ψ4 → (0, 0, 2, -2, -2, -2) | V−2ψ1−2ψ3 → (0, 0, -2, 0, -2, 0) | V2ψ1+2ψ2−2ψ3−2ψ4 → (0, 0, 2, 2, -2, -2) | V4ψ1−2ψ2−2ψ4 → (0, 0, 4, -2, 0, -2) | V−2ψ1+4ψ2−2ψ3 → (0, 0, -2, 4, -2, 0) | V0 → (0, 0, 0, 0, 0, 0) | V2ψ1−4ψ2+2ψ3 → (0, 0, 2, -4, 2, 0) | V−4ψ1+2ψ2+2ψ4 → (0, 0, -4, 2, 0, 2) | V−2ψ1−2ψ2+2ψ3+2ψ4 → (0, 0, -2, -2, 2, 2) | V2ψ1+2ψ3 → (0, 0, 2, 0, 2, 0) | V−2ψ1+2ψ2+2ψ3+2ψ4 → (0, 0, -2, 2, 2, 2) | V−2ψ2+4ψ3+2ψ4 → (0, 0, 0, -2, 4, 2) | Vω1+2ψ2−2ψ3−4ψ4 → (1, 0, 0, 2, -2, -4) | Vω1+2ψ1−2ψ2−4ψ4 → (1, 0, 2, -2, 0, -4) | Vω1−2ψ1−2ψ4 → (1, 0, -2, 0, 0, -2) | Vω1+2ψ3−2ψ4 → (1, 0, 0, 0, 2, -2) | Vω1−2ψ3+2ψ4 → (1, 0, 0, 0, -2, 2) | Vω1+2ψ1+2ψ4 → (1, 0, 2, 0, 0, 2) | Vω1−2ψ1+2ψ2+4ψ4 → (1, 0, -2, 2, 0, 4) | Vω1−2ψ2+2ψ3+4ψ4 → (1, 0, 0, -2, 2, 4) | Vω2−2ψ3−4ψ4 → (0, 1, 0, 0, -2, -4) | Vω2+2ψ1−4ψ4 → (0, 1, 2, 0, 0, -4) | Vω2−2ψ1+2ψ2−2ψ4 → (0, 1, -2, 2, 0, -2) | Vω2−2ψ2+2ψ3−2ψ4 → (0, 1, 0, -2, 2, -2) | Vω2+2ψ2−2ψ3+2ψ4 → (0, 1, 0, 2, -2, 2) | Vω2+2ψ1−2ψ2+2ψ4 → (0, 1, 2, -2, 0, 2) | Vω2−2ψ1+4ψ4 → (0, 1, -2, 0, 0, 4) | Vω2+2ψ3+4ψ4 → (0, 1, 0, 0, 2, 4) | V2ω1 → (2, 0, 0, 0, 0, 0) | Vω1+ω2+2ψ1−2ψ3−2ψ4 → (1, 1, 2, 0, -2, -2) | Vω1+ω2−2ψ1+2ψ2−2ψ3 → (1, 1, -2, 2, -2, 0) | Vω1+ω2−2ψ2 → (1, 1, 0, -2, 0, 0) | Vω1+ω2+2ψ2 → (1, 1, 0, 2, 0, 0) | Vω1+ω2+2ψ1−2ψ2+2ψ3 → (1, 1, 2, -2, 2, 0) | Vω1+ω2−2ψ1+2ψ3+2ψ4 → (1, 1, -2, 0, 2, 2) | V2ω2 → (0, 2, 0, 0, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 | W18 | W19 | W20 | W21 | W22 | W23 | W24 | W25 | W26 | W27 | W28 | W29 | W30 | W31 | W32 | W33 | W34 | W35 | W36 | W37 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
|
|
|
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | 2ω1 0 −2ω1 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | 2ω2 0 −2ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ψ2−4ψ3−2ψ4 | 2ψ1−2ψ2−2ψ3−2ψ4 | −2ψ1−2ψ3 | 2ψ1+2ψ2−2ψ3−2ψ4 | 4ψ1−2ψ2−2ψ4 | −2ψ1+4ψ2−2ψ3 | 0 | 2ψ1−4ψ2+2ψ3 | −4ψ1+2ψ2+2ψ4 | −2ψ1−2ψ2+2ψ3+2ψ4 | 2ψ1+2ψ3 | −2ψ1+2ψ2+2ψ3+2ψ4 | −2ψ2+4ψ3+2ψ4 | ω1+2ψ2−2ψ3−4ψ4 −ω1+2ψ2−2ψ3−4ψ4 | ω1+2ψ1−2ψ2−4ψ4 −ω1+2ψ1−2ψ2−4ψ4 | ω1−2ψ1−2ψ4 −ω1−2ψ1−2ψ4 | ω1+2ψ3−2ψ4 −ω1+2ψ3−2ψ4 | ω1−2ψ3+2ψ4 −ω1−2ψ3+2ψ4 | ω1+2ψ1+2ψ4 −ω1+2ψ1+2ψ4 | ω1−2ψ1+2ψ2+4ψ4 −ω1−2ψ1+2ψ2+4ψ4 | ω1−2ψ2+2ψ3+4ψ4 −ω1−2ψ2+2ψ3+4ψ4 | ω2−2ψ3−4ψ4 −ω2−2ψ3−4ψ4 | ω2+2ψ1−4ψ4 −ω2+2ψ1−4ψ4 | ω2−2ψ1+2ψ2−2ψ4 −ω2−2ψ1+2ψ2−2ψ4 | ω2−2ψ2+2ψ3−2ψ4 −ω2−2ψ2+2ψ3−2ψ4 | ω2+2ψ2−2ψ3+2ψ4 −ω2+2ψ2−2ψ3+2ψ4 | ω2+2ψ1−2ψ2+2ψ4 −ω2+2ψ1−2ψ2+2ψ4 | ω2−2ψ1+4ψ4 −ω2−2ψ1+4ψ4 | ω2+2ψ3+4ψ4 −ω2+2ψ3+4ψ4 | 2ω1 0 −2ω1 | ω1+ω2+2ψ1−2ψ3−2ψ4 −ω1+ω2+2ψ1−2ψ3−2ψ4 ω1−ω2+2ψ1−2ψ3−2ψ4 −ω1−ω2+2ψ1−2ψ3−2ψ4 | ω1+ω2−2ψ1+2ψ2−2ψ3 −ω1+ω2−2ψ1+2ψ2−2ψ3 ω1−ω2−2ψ1+2ψ2−2ψ3 −ω1−ω2−2ψ1+2ψ2−2ψ3 | ω1+ω2−2ψ2 −ω1+ω2−2ψ2 ω1−ω2−2ψ2 −ω1−ω2−2ψ2 | ω1+ω2+2ψ2 −ω1+ω2+2ψ2 ω1−ω2+2ψ2 −ω1−ω2+2ψ2 | ω1+ω2+2ψ1−2ψ2+2ψ3 −ω1+ω2+2ψ1−2ψ2+2ψ3 ω1−ω2+2ψ1−2ψ2+2ψ3 −ω1−ω2+2ψ1−2ψ2+2ψ3 | ω1+ω2−2ψ1+2ψ3+2ψ4 −ω1+ω2−2ψ1+2ψ3+2ψ4 ω1−ω2−2ψ1+2ψ3+2ψ4 −ω1−ω2−2ψ1+2ψ3+2ψ4 | 2ω2 0 −2ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ψ2−4ψ3−2ψ4 | M2ψ1−2ψ2−2ψ3−2ψ4 | M−2ψ1−2ψ3 | M2ψ1+2ψ2−2ψ3−2ψ4 | M4ψ1−2ψ2−2ψ4 | M−2ψ1+4ψ2−2ψ3 | M0 | M2ψ1−4ψ2+2ψ3 | M−4ψ1+2ψ2+2ψ4 | M−2ψ1−2ψ2+2ψ3+2ψ4 | M2ψ1+2ψ3 | M−2ψ1+2ψ2+2ψ3+2ψ4 | M−2ψ2+4ψ3+2ψ4 | Mω1+2ψ2−2ψ3−4ψ4⊕M−ω1+2ψ2−2ψ3−4ψ4 | Mω1+2ψ1−2ψ2−4ψ4⊕M−ω1+2ψ1−2ψ2−4ψ4 | Mω1−2ψ1−2ψ4⊕M−ω1−2ψ1−2ψ4 | Mω1+2ψ3−2ψ4⊕M−ω1+2ψ3−2ψ4 | Mω1−2ψ3+2ψ4⊕M−ω1−2ψ3+2ψ4 | Mω1+2ψ1+2ψ4⊕M−ω1+2ψ1+2ψ4 | Mω1−2ψ1+2ψ2+4ψ4⊕M−ω1−2ψ1+2ψ2+4ψ4 | Mω1−2ψ2+2ψ3+4ψ4⊕M−ω1−2ψ2+2ψ3+4ψ4 | Mω2−2ψ3−4ψ4⊕M−ω2−2ψ3−4ψ4 | Mω2+2ψ1−4ψ4⊕M−ω2+2ψ1−4ψ4 | Mω2−2ψ1+2ψ2−2ψ4⊕M−ω2−2ψ1+2ψ2−2ψ4 | Mω2−2ψ2+2ψ3−2ψ4⊕M−ω2−2ψ2+2ψ3−2ψ4 | Mω2+2ψ2−2ψ3+2ψ4⊕M−ω2+2ψ2−2ψ3+2ψ4 | Mω2+2ψ1−2ψ2+2ψ4⊕M−ω2+2ψ1−2ψ2+2ψ4 | Mω2−2ψ1+4ψ4⊕M−ω2−2ψ1+4ψ4 | Mω2+2ψ3+4ψ4⊕M−ω2+2ψ3+4ψ4 | M2ω1⊕M0⊕M−2ω1 | Mω1+ω2+2ψ1−2ψ3−2ψ4⊕M−ω1+ω2+2ψ1−2ψ3−2ψ4⊕Mω1−ω2+2ψ1−2ψ3−2ψ4⊕M−ω1−ω2+2ψ1−2ψ3−2ψ4 | Mω1+ω2−2ψ1+2ψ2−2ψ3⊕M−ω1+ω2−2ψ1+2ψ2−2ψ3⊕Mω1−ω2−2ψ1+2ψ2−2ψ3⊕M−ω1−ω2−2ψ1+2ψ2−2ψ3 | Mω1+ω2−2ψ2⊕M−ω1+ω2−2ψ2⊕Mω1−ω2−2ψ2⊕M−ω1−ω2−2ψ2 | Mω1+ω2+2ψ2⊕M−ω1+ω2+2ψ2⊕Mω1−ω2+2ψ2⊕M−ω1−ω2+2ψ2 | Mω1+ω2+2ψ1−2ψ2+2ψ3⊕M−ω1+ω2+2ψ1−2ψ2+2ψ3⊕Mω1−ω2+2ψ1−2ψ2+2ψ3⊕M−ω1−ω2+2ψ1−2ψ2+2ψ3 | Mω1+ω2−2ψ1+2ψ3+2ψ4⊕M−ω1+ω2−2ψ1+2ψ3+2ψ4⊕Mω1−ω2−2ψ1+2ψ3+2ψ4⊕M−ω1−ω2−2ψ1+2ψ3+2ψ4 | M2ω2⊕M0⊕M−2ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M2ψ2−4ψ3−2ψ4 | M2ψ1−2ψ2−2ψ3−2ψ4 | M−2ψ1−2ψ3 | M2ψ1+2ψ2−2ψ3−2ψ4 | M4ψ1−2ψ2−2ψ4 | M−2ψ1+4ψ2−2ψ3 | 4M0 | M2ψ1−4ψ2+2ψ3 | M−4ψ1+2ψ2+2ψ4 | M−2ψ1−2ψ2+2ψ3+2ψ4 | M2ψ1+2ψ3 | M−2ψ1+2ψ2+2ψ3+2ψ4 | M−2ψ2+4ψ3+2ψ4 | Mω1+2ψ2−2ψ3−4ψ4⊕M−ω1+2ψ2−2ψ3−4ψ4 | Mω1+2ψ1−2ψ2−4ψ4⊕M−ω1+2ψ1−2ψ2−4ψ4 | Mω1−2ψ1−2ψ4⊕M−ω1−2ψ1−2ψ4 | Mω1+2ψ3−2ψ4⊕M−ω1+2ψ3−2ψ4 | Mω1−2ψ3+2ψ4⊕M−ω1−2ψ3+2ψ4 | Mω1+2ψ1+2ψ4⊕M−ω1+2ψ1+2ψ4 | Mω1−2ψ1+2ψ2+4ψ4⊕M−ω1−2ψ1+2ψ2+4ψ4 | Mω1−2ψ2+2ψ3+4ψ4⊕M−ω1−2ψ2+2ψ3+4ψ4 | Mω2−2ψ3−4ψ4⊕M−ω2−2ψ3−4ψ4 | Mω2+2ψ1−4ψ4⊕M−ω2+2ψ1−4ψ4 | Mω2−2ψ1+2ψ2−2ψ4⊕M−ω2−2ψ1+2ψ2−2ψ4 | Mω2−2ψ2+2ψ3−2ψ4⊕M−ω2−2ψ2+2ψ3−2ψ4 | Mω2+2ψ2−2ψ3+2ψ4⊕M−ω2+2ψ2−2ψ3+2ψ4 | Mω2+2ψ1−2ψ2+2ψ4⊕M−ω2+2ψ1−2ψ2+2ψ4 | Mω2−2ψ1+4ψ4⊕M−ω2−2ψ1+4ψ4 | Mω2+2ψ3+4ψ4⊕M−ω2+2ψ3+4ψ4 | M2ω1⊕M0⊕M−2ω1 | Mω1+ω2+2ψ1−2ψ3−2ψ4⊕M−ω1+ω2+2ψ1−2ψ3−2ψ4⊕Mω1−ω2+2ψ1−2ψ3−2ψ4⊕M−ω1−ω2+2ψ1−2ψ3−2ψ4 | Mω1+ω2−2ψ1+2ψ2−2ψ3⊕M−ω1+ω2−2ψ1+2ψ2−2ψ3⊕Mω1−ω2−2ψ1+2ψ2−2ψ3⊕M−ω1−ω2−2ψ1+2ψ2−2ψ3 | Mω1+ω2−2ψ2⊕M−ω1+ω2−2ψ2⊕Mω1−ω2−2ψ2⊕M−ω1−ω2−2ψ2 | Mω1+ω2+2ψ2⊕M−ω1+ω2+2ψ2⊕Mω1−ω2+2ψ2⊕M−ω1−ω2+2ψ2 | Mω1+ω2+2ψ1−2ψ2+2ψ3⊕M−ω1+ω2+2ψ1−2ψ2+2ψ3⊕Mω1−ω2+2ψ1−2ψ2+2ψ3⊕M−ω1−ω2+2ψ1−2ψ2+2ψ3 | Mω1+ω2−2ψ1+2ψ3+2ψ4⊕M−ω1+ω2−2ψ1+2ψ3+2ψ4⊕Mω1−ω2−2ψ1+2ψ3+2ψ4⊕M−ω1−ω2−2ψ1+2ψ3+2ψ4 | M2ω2⊕M0⊕M−2ω2 |